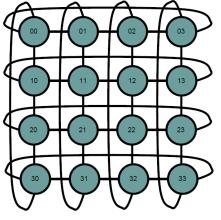
Network-on-chip (NOC)

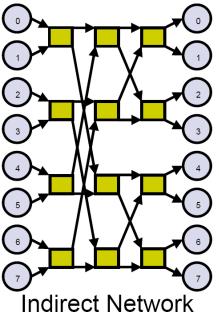
Topologies

Network Topology

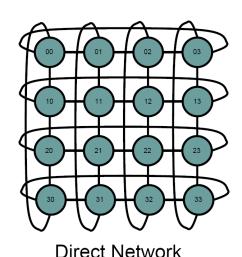

- Static arrangement of channels and nodes in an interconnection network
- The roads over which packets travel
- Topology chosen based on cost and performance
 - Cost and performance determided by many factors (flow control, routing, traffic)
 - Measures to evaluate just the topology
 - Bisection bandwidth
 - √ Channel load
 - ✓ Path delay

Factors Affecting Perfomance

- Factors that influence the performance of a NoC are
 - Topology (static arrangement of channels and nodes)
 - Routing Technique (selection of a path through the network)
 - → Flow Control (how are network resources allocated, if packets traverse the network)
 - Router Architecture (buffers, switches, ...)
 - Traffic Pattern

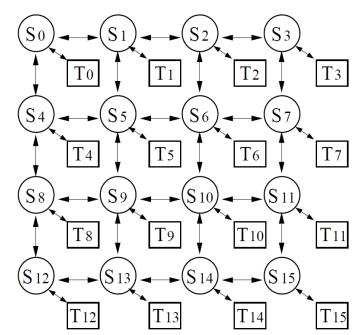

Direct and Indirect Networks

- Direct Network
 - Every Node in the network is both a terminal and a switch


Direct Network

- Indirect Network
 - Nodes are either switches or terminal

Direct Networks


- aka point-to-point network
- Consists of a set of nodes, each one being directly connected to a (usually small) subset of other nodes in the network
 - These nodes may have different functional capabilities
 - ✓ E.g., vector processors, graphics processors, I/O processors, etc.

5

Direct Networks - Router

- A common component of the node is the router
 - It handles message communication among nodes
 - ✓ For this reason, direct networks are also known as router-based networks
 - → Each router has direct connections to the router of its neighbors

Direct Networks - Links

- Two neighboring nodes are connected by a pair of unidirectional channels in opposite directions
- A bidirectional channel may also be used to connect two neighboring nodes

Direct Networks - Scalability

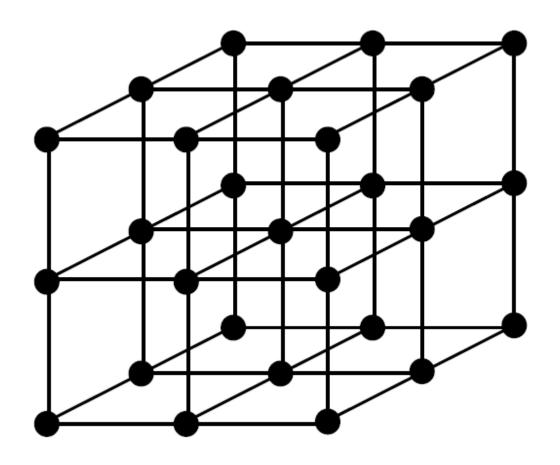
- As the number of nodes in the system increases, the total communication bandwidth also increase
 - Thus, direct networks have been a popular interconnection architecture for constructing large-scale parallel computers

Direct Networks - Topologies

- Many network topologies have been proposed in terms of their graph-theoretical properties
 - Very few of them have ever been implemented
 - Most of the implemented networks have an orthogonal topology

DN - Orthogonal Topology

- A network topology is orthogonal if and only if nodes can be arranged in an orthogonal ndimensional space, and every link can be arranged in such a way that it produces a displacement in a single dimension
- Orthogonal Topologies
 - Strictly orthogonal topology
 - Every node has at least one link crossing each dimension
 - Weakly orthogonal topology
 - ✓Some nodes may not have any link in some dimensions

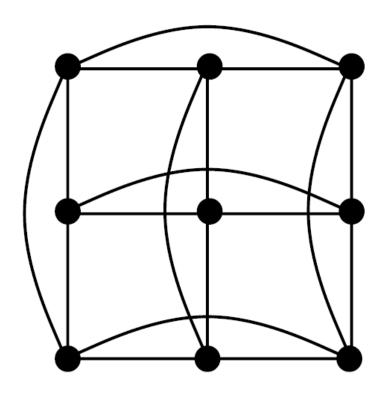

DN - Strictly Orthogonal Topologies

- Routing is very simple
 - Can be efficiently implemented in hardware
- Most popular strictly orthogonal direct network topologies
 - → n-dimensional mesh
 - → *k*-ary *n*-cube (torus)
 - → Hypercube

n-Dimensional Mesh

- It has $K_0 x K_1 x ... x K_{n-1}$ nodes, K_i nodes along each dimension i
- Two nodes X and Y are neighbors if and only if $y_i = x_i$ for all i, $0 \le i \le n-1$, except one, j, where $y_j = x_j \pm 1$
 - → Thus, nodes have from n to 2n neighbors, depending on their location in the mesh
 - √ Therefore, this topology is not regular.

n-Dimensional Mesh

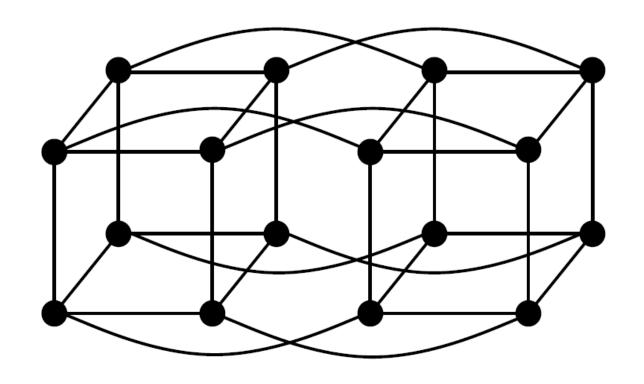


3-dimensional mesh

k-ary n-cube

- All nodes have the same number of neighbors
- It has Kⁿ nodes
- Two nodes X and Y are neighbors if and only if $y_i = x_i$ for all i, $0 \le i \le n-1$, except one, j, where $y_i = (x_i \pm 1) \mod K$
 - Modular arithmetic adds wraparound channels
 - √ Therefore, this topology is regular.

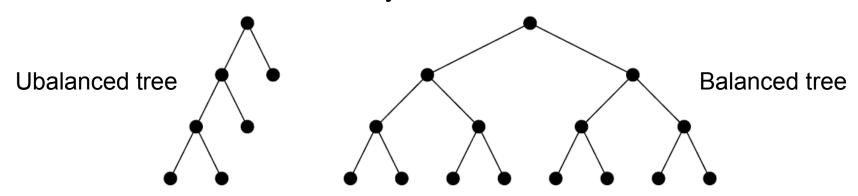
k-ary n-cube



3-ary 2-cube

Hypercube

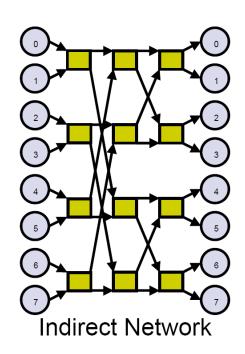
- It is a special case of both n-dimensional meshes and k-ary n-cubes
- A hypercube is an n-dimensional mesh in which $K_i = 2$ for $0 \le i \le n-1$, or a 2-ary n-cube
 - This topology is regular


Hypercube

2-ary 4-cube (hypercube)

Other Direct Network Topologies

- Aimed at minimizing the network diameter
- Every node but the root has a single parent node
 - Trees contain no cycles
- k-ary tree
 - →A tree in which every node but the leaves has a fixed number k of descendants
- Balanced tree
 - → The distance from every leaf node to the root is the same



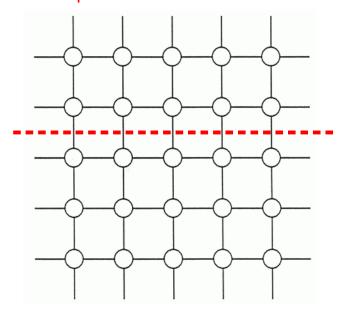
Drawbacks of Trees

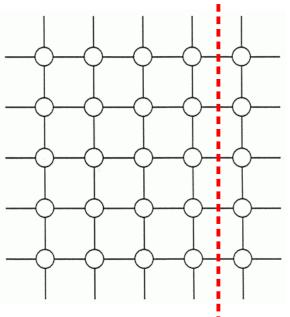
- Root node and the nodes close to it become a bottleneck
 - Allocating a higher channel bandwidth to channels located close to the root node
 - ✓Using channels with different bandwidths is not practical, especially when message transmission is pipelined
- There are no alternative paths between any pair of nodes

Indirect Networks

- The communication between any two nodes is carried through some switches
- Each node has a network adapter that connects to a network switch
- The interconnection of those switches defines various network topologies

Topology & Physical Constraints


- It is important to model the relationships between physical constraints and topology
 - And the resulting impact on performance
- Network optimization is the process of utilizing these models
 - → For selecting topologies that best match the physical constraints of the implementation
- For a given implementation technology, physical constraints determine architectural features
 - Channel widths
 - ✓ Impact on zero-load latency


Bisection Width/Bandwidth

- One of the physical constraints facing the implementation of interconnection networks is the available wiring area
- The available wiring area is determined by the packaging technology
 - Whether the network resides on a chip, multichip module, or printed circuit board
- VLSI systems are generally wire limited
 - → The silicon area required by these systems is determined by the interconnect area, and the performance is limited by the delay of these interconnections
- The choice of network dimension is influenced by how well the resulting topology makes use of the available wiring area
 - One such performance measure is the bisection width

Cuts

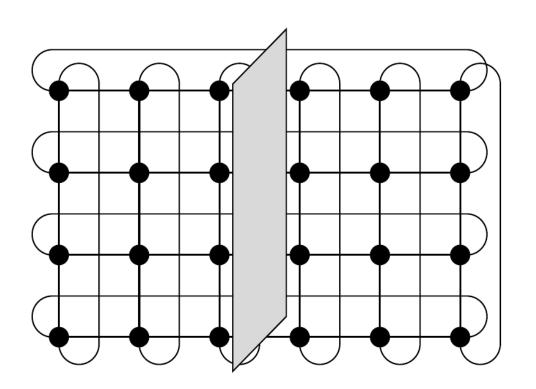
- A *cut* of a network, $C(N_1, N_2)$, is a set of channels that partitions the set of all nodes into two disjoint sets, N_1 and N_2
 - \rightarrow Each element in $C(N_1, N_2)$ is a channel with a source in N_1 and destination in N_2 or vice versa

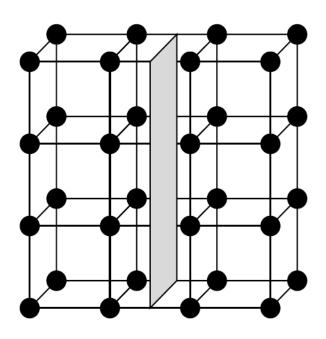
Bandwidth of the Cut

■ Total bandwidth of the cut $C(N_1, N_2)$

$$B(N_1, N_2) = \sum_{c \in C(N_1, N_2)} b_c$$

Bisection


- The bisection is a cut that partitions the entire network nearly in half
- The *channel bisection* of a network, *B*_c, is the minimum channel count over all bisections


$$B_C = \min_{\text{bisections}} |C(N_1, N_2)|$$

■ The **bisection bandwidth** of a network, B_B , is the minimum bandwidth over all bisections

$$B_B = \min_{\text{bisections}} |B(N_1, N_2)|$$

Bisection Examples

Diameter

The diameter of a network, H_{max}, is the largest, minimal hop count over all pairs of terminal nodes

$$H_{\max} = \max_{\mathbf{x}, \mathbf{y} \in N} |H(\mathbf{x}, \mathbf{y})|$$

For a fully connected network with N terminals built from switches with out degree δ_0 , H_{max} is bounded by

$$H_{\text{max}} \ge \log_{\delta_O} N \tag{1}$$

Each terminal can reach at most δ_0 other terminals after one hop At most δ_0^2 after two hops, and at most δ_0^H after H hops If we set $\delta_0^H = N$ and solve for H, we get (1)

Average Minimum Hop count

The average minimum hop count of a network, H_{min}, is defined as the average hop count over all sources and destinations

$$H_{\min} = \frac{1}{N^2} \sum_{x, y \in N} H(x, y)$$

Physical Distance and Delay

■The *physical distance* of a path is

$$D(P) = \sum_{c \in P} l_c$$

■The *delay* of a path is

$$t(P)=D(P)/v$$

Performance

- Throughput
 - Data rate in bits/s that the network accepts per input port
 - → It is a property of the entire network
 - It depends on
 - ✓ Routing
 - √ Flow control
 - √Topology

Ideal Throughput

- Ideal throughput of a topology
 - Throughput that the network could carry with perfect flow control (no contention) and routing (load balanced over alternative paths)
- Maximum throughput
 - → It occurs when some channel in the network becomes saturated
- We suppose for semplicity that all the channel bandwidths are b

Channel Load

■ We define the **load of a channel c**, γ_c , as

$$\gamma_c = \frac{\text{bandwidth demanded from channel } c}{\text{bandwidth of the input ports}}$$

- Equivalently
 - Amount of traffic that must cross c if each input injects one unit of traffic
- Of course, it depends on the traffic pattern considered
 - → We will assume uniform traffic

Maximum Channel Load

Under a particular traffic pattern, the channel that carries the largest fraction of traffic (the bottleneck channel) determines the maximum channel load γ_{max} of the topology

$$\gamma_{\max} = \max_{c \in C} \gamma_c$$

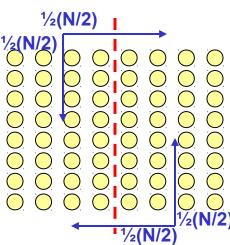
Ideal Throughput

- When the offered traffic reaches the throughput of the network, the load on the bottleneck channel will be equal to the channel bandwidth b
 - Any additional traffic would overload this channel
- The *ideal throughput* ⊕_{ideal} is the input bandwidth that saturates the bottleneck channel

$$\gamma_c = \frac{\text{bandwidth demanded from channel } c}{\text{bandwidth of the input ports}}$$

$$\gamma_c = \gamma_{\text{max}} = \frac{b}{\Theta_{\text{ideal}}}$$

$$\Theta_{\text{ideal}} = \frac{b}{\gamma_{\text{max}}}$$


Bounds for γ_{max}

- y_{max} is very hard to compute for the general case (arbitrary topology and arbitrary traffic pattern)
- For uniform traffic some upper and lower bounds can be computed with much less effort

Lower Bound on γ_{max}

- The load on the bisection channels gives a lower bound on γ_{max}
- Let us assume uniform traffic
 - → On average, half of the traffic (N/2 packets) must cross the B_c bisection channels
 - → The best throughput occurs when these packets are distributed evenly across the bisection channels
 - Thus, the load on each bisection channel γ_B is at least

$$\gamma_{\text{max}} \ge \gamma_B = \frac{N}{2B_C}$$

Upper Bound on 🖰 ideal

We found that

$$\Theta_{\text{ideal}} = \frac{b}{\gamma_{\text{max}}}$$
 and $\gamma_{\text{max}} \ge \gamma_B = \frac{N}{2B_C}$

Combining the above equations we have

$$\Theta_{\text{ideal}} \leq \frac{2 b B_C}{N} = \frac{2 B_B}{N}$$

Latency

- The *latency* of a network is the time required for a packet to traverse the network
 - → From the time the head of the packet arrives at the input port to the time the tail of the packet departs the output port

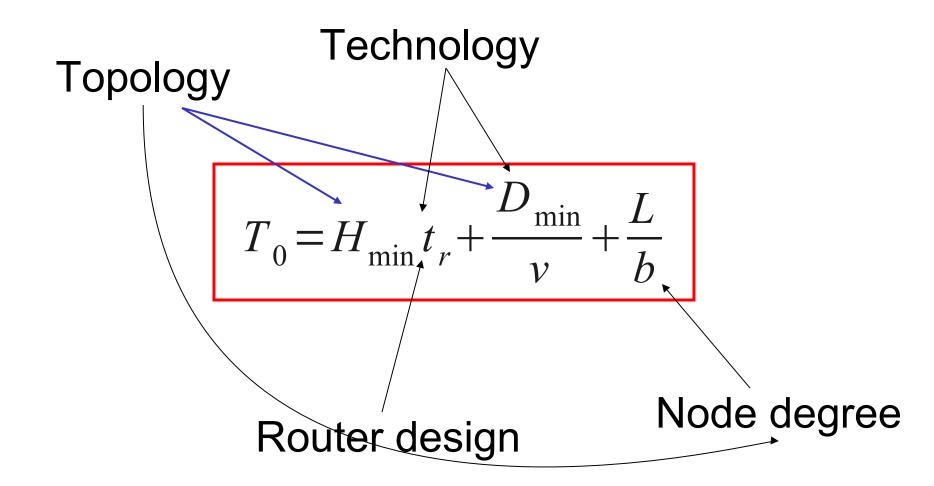
Components of the Latency

- We separate latency, *T*, into two components
 - → Head latency (T_h): time required for the head to traverse the network
 - Serialization latency (T_s): time for a packet of length L to cross a channel with bandwidth b

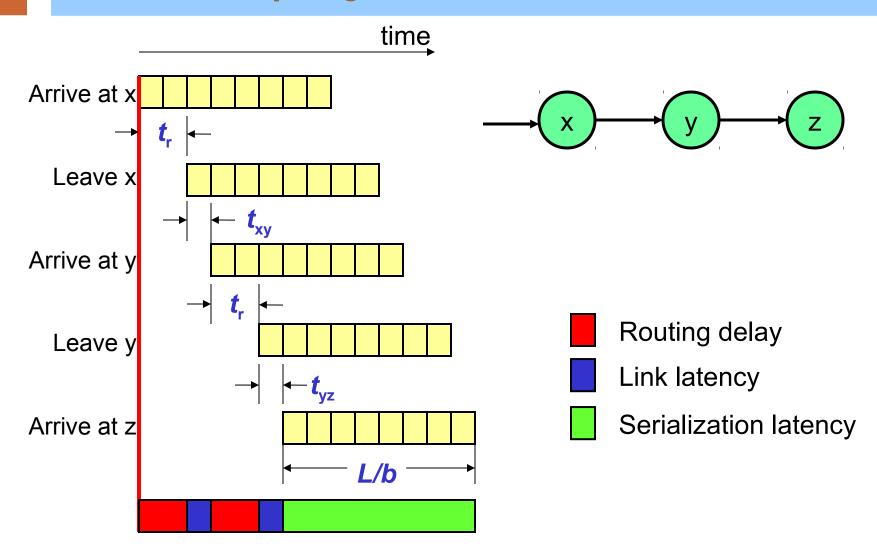
$$T = T_h + T_s = T_h + \frac{L}{h}$$

Contributions

- Like throughput, latency depends on
 - → Routing
 - → Flow control
 - → Design of the router
 - → Topology

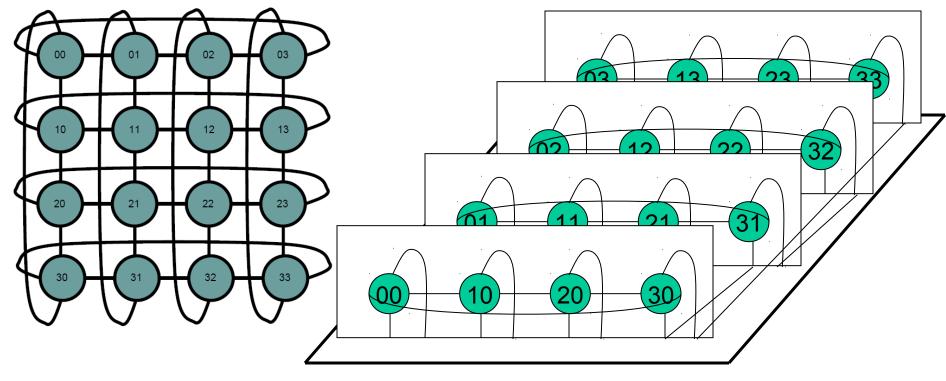

Latency at Zero Load

- \blacksquare We consider *latency at zero load, T*₀
 - Latency when no contention occurs
- \blacksquare T_h : sum of two factors determined by the topology
 - → Router delay (T_r): time spent in the routers
 - \rightarrow Time of flight (T_{w}): time spent on the wires


$$T_h = T_r + T_w = H_{\min} t_r + \frac{D_{\min}}{v}$$

$$T_0 = H_{\min} t_r + \frac{D_{\min}}{v} + \frac{L}{b}$$

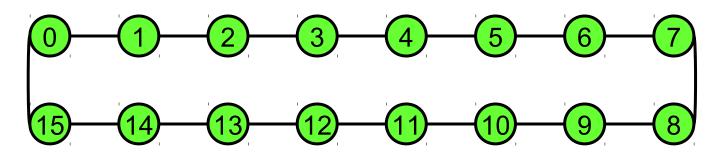
Latency at Zero Load


Packet Propagation

Case Study

- A good topology exploits characteristics of the available packaging technology to meet bandwidth and latency requirements of the application
- To maximize bandwidth a topology should saturate the bisection bandwidth

Bandwidth Analysis (Torus)


Assume: 256 signals @ 1Gbits/s

Bisection bandwidth 256 Gbits/s

Bandwidth Analysis (Torus)

- 16 unidirectional channels cross the midpoint of the topology
- To saturate the bisection of 256 signals
 - → Each channel crossing the bisection should be 256/16 = 16 signals wide
- Constraints
 - Each node packaged on a IC
 - ✓ Limited number of I/O pins (e.g., 128)
 - $\sqrt{8}$ channels per node \rightarrow 8x16=128 pins \rightarrow OK

Bandwidth Analysis (Ring)

- 4 unidirectional channels cross the mid-point of the topology
- To saturate the bisection of 256 signals
 - → Each channel crossing the bisection should be 256/4 = 64 signals wide
- Constraints
 - → Each node packaged on a IC
 - ✓ Limited number of I/O pins (e.g., 128)
 - √ 4 channels per node → 4x64=256 pins → INVALID
 - With identical technology constraints, the ring provides only half the bandwidth of the torus

Delay Analysis

- The application requires only 16Gbits/s
 - ...but also minimum latency
- The application uses long 4,096-bit packets
- Suppose random traffic
 - → Average hop count
 - \checkmark Torus = 2
 - ✓ Ring = 4
- Channel size
 - → Torus = 16 bits
 - →Ring = 32 bits

Delay Analysis

- Serialization latency (channel speed 1GHz)
 - \rightarrow Torus = 4,096/16 * 1ns = 256 ns
 - \rightarrow Ring = 4,096/32 * 1ns = 128 ns
- Latency assuming 20ns hop delay
 - \rightarrow Torus = 256 + 20*2 = 296 ns
 - \rightarrow Ring = 128 + 20*4 = 208 ns
- No one topology is optimal for all applications
 - Different topologies are appropriate for different constraints and requirements